Noise robust recognition using feature selective modeling

نویسندگان

  • Michael K. Brendborg
  • Børge Lindberg
چکیده

In automatic speech recognition (ASR) systems immunity to additive noise may either be applied at the preprocessing stage or at the pattern matching stage. The Feature Selective Modeling (FSM) approach suggested in this paper is applied in the pattern matching stage, but in contrast to most existing methods, it is optimized on a model basis such that noise robust and phonetically descriptive parameters of a particular model can be set in focus. For sonorant sounds this is done by marking the lowest n mean values of each HMM density function as being sensitive to noise in a log filterbank representation. The noise robustness is obtained by de-emphasizing the marked feature dimensions. Two different methods for de-emphasizing mean value masking and dimensional reduction are presented and experimentally compared to the PMC-algorithm [2].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه

Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

A novel Local feature descriptor using the Mercator projection for 3D object recognition

Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...

متن کامل

Modeling State-Conditional Observation Distribution using Weighted Stereo Samples for Factorial Speech Processing Models

This paper investigates the role of factorial speech processing models in noise-robust automatic speech recognition tasks. Factorial models can embed non-stationary noise models using Markov chains as one of its source chain. The paper proposes a modeling scheme for modeling state-conditional observation distribution of factorial models based on weighted stereo samples. This scheme is an extens...

متن کامل

Robust Identification of Smart Foam Using Set Mem-bership Estimation in A Model Error Modeling Frame-work

The aim of this paper is robust identification of smart foam, as an electroacoustic transducer, considering unmodeled dynamics due to nonlinearities in behaviour at low frequencies and measurement noise at high frequencies as existent uncertainties. Set membership estimation combined with model error modelling technique is used where the approach is based on worst case scenario with unknown but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997